*** Welcome to piglix ***

Big Crunch


The Big Crunch is one possible scenario for the ultimate fate of the universe, in which the metric expansion of space eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero or causing a reformation of the universe starting with another Big Bang. Sudden singularities and crunch or rip singularities at late times occur only for hypothetical matter with implausible physical properties.

If the universe's expansion speed does not exceed the escape velocity, then the mutual gravitational attraction of all its matter will eventually cause it to contract. If entropy continues to increase in the contracting phase (see Ergodic hypothesis), the contraction would appear very different from the time reversal of the expansion. While the early universe was highly uniform, a contracting universe would become increasingly clumped. Eventually all matter would collapse into black holes, which would then coalesce producing a unified black hole or Big Crunch singularity.

The exact details of the events that would take place before the final collapse depend on the length of both the expansion phase as well as the previous contraction phase; the longer both lasted, the more events expected to take place in an ever-expanding universe would happen; nonetheless it's expected that the contraction phase would not immediately be noticed by hypothetical observers because of the delay caused by the speed of light, that the temperature of the cosmic microwave background would rise during contraction symmetrically compared to the previous expansion phase, and that the events that took place during the Big Bang would take in opposite order. For a contracting Universe similar to ours in composition it's expected that superclusters would merge among themselves followed by galaxy clusters and later galaxies. By the time stars were so close together that collisions among them were frequent, the temperature of the cosmic microwave background would have increased so much that stars would be unable to expel their internal heat, slowly cooking until they exploded leaving behind a hot and highly heterogeneus gas, whose atoms would break down in their constituent subatomic particles because of the increasing temperature, that would be absorbed by the already coalescing black holes before the Big Crunch itself.


...
Wikipedia

...