*** Welcome to piglix ***

BglII

Restriction endonuclease BglII
PDB 2p0j EBI.jpg
structure of restriction endonuclease BstYI bound to non-cognate DNA
Identifiers
Symbol Endonuc-BglII
Pfam PF09195
Pfam clan CL0236
InterPro IPR015278
SCOP 1dfm
SUPERFAMILY 1dfm

BglII (pronounced "begel two") is a type II restriction endonuclease enzyme isolated from certain strains of Bacillus globigii.

The principal function of restriction enzymes is the protection of the host genome against foreign DNA, but they may also have some involvement in recombination and transposition.

Like most type II restriction enzymes, BglII consists of two identical subunits that form a homodimer around the DNA double helix. Each monomer is 223 amino acids and symmetrically bind both sides of the unique palindromic nucleotide sequence AGATCT, cleaving the scissile phosphodiester bond between the first Adenine and Guanine nucleotides on both strands of the DNA molecule, creating sticky ends with 5' end overhangs.

Being a type II restriction enzyme, BglII does not require ATP (adenosine triphosphate) for its enzymatic function, but only requires association with a divalent metal cation, most likely Mg2+. Unlike other restriction enzymes of its class, BglII has been show to possess some unique structural characteristics, such as a β-sandwich subdomain, and appears to undergo a unique conformational change upon dimerization, but its overall structure and mechanism of catalysis remain consistent with other type II restriction enzymes.

Restriction Endonuclease enzymes play a very important role in modern molecular cloning techniques. Because of their unique recognition/cut sites, restriction enzymes can be used to precisely cut DNA in specific locations in a controllable manner. Once cut, scientist can then insert the desired DNA fragment possessing "sticky ends" into a circular DNA molecule, and ligate them together to create an engineered cloning vector.

BglII catalyses phosphodiester bond cleavage at the DNA backbone through a phosphoryl transfer to water. Studies on the mechanism of restriction enzymes have revealed several general features that seem to be true in almost all cases, although the actual mechanism for each enzyme is most likely some variation of this general mechanism. This mechanism requires a base to generate the hydroxide ion from water, which will act as the nucleophile and attack the phosphorus in the phosphodiester bond. Also required is a Lewis acid to stabilize the extra negative charge of the pentacoordinated transition state phosphorus, as well as a general acid or metal ion that stabilizes the leaving group (3’-O-).


...
Wikipedia

...