*** Welcome to piglix ***

Beta carbon nitride


Beta carbon nitride (β-C3N4) is a superhard material predicted to be harder than diamond.

The material was first proposed in 1985 by Marvin Cohen and Amy Liu. Examining the nature of crystalline bonds they theorised that carbon and nitrogen atoms could form a particularly short and strong bond in a stable crystal lattice in a ratio of 1:1.3. That this material would be harder than diamond on the Mohs scale was first proposed in 1989.

The material has been considered difficult to produce and could not be synthesized for many years. Recently, the production of beta carbon nitride was achieved. For example, nanosized beta carbon nitride crystals and nanorods of this material were prepared by means of an approach involving mechanochemical processing.

Through a mechanochemical reaction process, β-C3N4 can be synthesized. This method is achieved by ball milling high purity graphite powders down to an amorphous nanoscale size while under an argon atmosphere, then the argon is purged and the graphite powders are introduced to an NH3 gas atmosphere, which after high energy ball milling, has been found to form a nanosized flake-like structure of β-C3N4. During milling, fracture and welding of the reactants and graphite powder particles occur repeatedly from ball/powder collisions. Plastic deformation of the graphite powder particles occur due to the shear bands decomposing into sub-grains that are separated by low-angle grain boundaries, further milling decreases the sub-grain size until nanosize sub-grains form. The high pressure and intense motion promotes catalytic dissociation of NH3 molecules into monatomic nitrogen on the fractured surface of the carbon. Nanosized carbon powders act substantially different from its bulk material as a result of particle dimension and surface area, causing the nanosized carbon to easily react with the free nitrogen atoms, forming β-C3N4 powder.


...
Wikipedia

...