*** Welcome to piglix ***

Beta-glucan


β-Glucans (beta-glucans) comprise a group of β-D-glucose polysaccharides naturally occurring in the cell walls of cereals, yeast, bacteria, and fungi, with significantly differing physicochemical properties dependent on source. Typically, β-glucans form a linear backbone with 1-3 β-glycosidic bonds but vary with respect to molecular mass, solubility, viscosity, branching structure, and gelation properties, causing diverse physiological effects in animals.

Various studies have examined the potential health effects of β-glucan. Oat fiber β-glucan at intake levels of at least 3 g per day can decrease the levels of saturated fats in the blood and may reduce the risk of heart disease. Some studies have suggested that cereal-derived β-glucan may also have immunomodulatory properties. Yeast and medicinal mushroom derived β-glucans have been investigated for their ability to modulate the immune system. β-glucans are further used in various nutraceutical and cosmetic products, as texturing agents, and as soluble fiber supplements, but can be problematic in the process of brewing.

Cereal, yeast, and fungal products have been used for centuries for medicinal and cosmetic purposes; however, the specific role of β-glucan was not explored until the 20th century. β-glucans were first discovered in lichens, and shortly thereafter in barley. A particular interest in oat β-glucan arose after their cholesterol lowering effect was reported in 1984.

In 1997, the FDA approved of a claim that intake of at least 3 g of β-glucan from oats per day decreased saturated fats and reduced the risk of heart disease.

Glucans are arranged in six-sided D-glucose rings connected linearly at varying carbon positions depending on the source, although most commonly β-glucans include a 1-3 glycosidic link in their backbone. Although technically β-glucans are chains of D-glucose polysaccharides linked by β-type glycosidic bonds, by convention not all β-D-glucose polysaccharides are categorized as β-glucans. Cellulose is not typically considered a β-glucan, as it is insoluble and does not exhibit the same physicochemical properties as other cereal or yeast β-glucans.


...
Wikipedia

...