In the mathematical study of several complex variables, the Bergman kernel, named after Stefan Bergman, is a reproducing kernel for the Hilbert space of all square integrable holomorphic functions on a domain D in Cn.
In detail, let L2(D) be the Hilbert space of square integrable functions on D, and let L2,h(D) denote the subspace consisting of holomorphic functions in D: that is,
where H(D) is the space of holomorphic functions in D. Then L2,h(D) is a Hilbert space: it is a closed linear subspace of L2(D), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D