*** Welcome to piglix ***

Beltrami identity


The Beltrami identity, named after Eugenio Beltrami, is a simplified and less general version of the Euler–Lagrange equation in the calculus of variations.

The Euler–Lagrange equation serves to extremize action functionals of the form

where a, b are constants and u′(x) = du / dx.

For the special case of L / ∂x = 0, the Euler–Lagrange equation reduces to the Beltrami identity,

where C is a constant.

The following derivation of the Beltrami identity starts with the Euler–Lagrange equation,

Multiplying both sides by u,

According to the chain rule,

where u′′ = du′/dx = d2u / dx2.

Rearranging this yields

Thus, substituting this expression for u′ ∂L/∂u into the second equation of this derivation,

By the product rule, the last term is re-expressed as

and rearranging,

For the case of L / ∂x = 0, this reduces to

so that taking the antiderivative results in the Beltrami identity,


...
Wikipedia

...