*** Welcome to piglix ***

Bayesian information criterion


In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC).

When fitting models, it is possible to increase the likelihood by adding parameters, but doing so may result in overfitting. Both BIC and AIC attempt to resolve this problem by introducing a penalty term for the number of parameters in the model; the penalty term is larger in BIC than in AIC.

The BIC was developed by Gideon E. Schwarz and published in a 1978 paper, where he gave a Bayesian argument for adopting it.

The BIC is formally defined as

where

The BIC is an asymptotic result derived under the assumptions that the data distribution is in an exponential family. That is, the integral of the likelihood function times the prior probability distribution over the parameters of the model for fixed observed data is approximated as


...
Wikipedia

...