*** Welcome to piglix ***

Basset–Boussinesq–Oseen equation


In fluid dynamics, the Basset–Boussinesq–Oseen equation (BBO equation) describes the motion of – and forces on – a small particle in unsteady flow at low Reynolds numbers. The equation is named after Joseph Valentin Boussinesq, Alfred Barnard Basset and Carl Wilhelm Oseen.

The BBO equation, in the formulation as given by Zhu & Fan (1998, pp. 18–27) and Soo (1990), pertains to a small spherical particle of diameter having mean density whose center is located at . The particle moves with Lagrangian velocity in a fluid of density , dynamic viscosity and Eulerian velocity field . The fluid velocity field surrounding the particle consists of the undisturbed, local Eulerian velocity field plus a disturbance field – created by the presence of the particle and its motion with respect to the undisturbed field For very small particle diameter the latter is locally a constant whose value is given by the undisturbed Eulerian field evaluated at the location of the particle center, . The small particle size also implies that the disturbed flow can be found in the limit of very small Reynolds number, leading to a drag force given by Stokes' drag. Unsteadiness of the flow relative to the particle results in force contributions by added mass and the Basset force. The BBO equation states:


...
Wikipedia

...