Baseband is a signal that has a very narrow frequency range, i.e. a spectral magnitude that is nonzero only for frequencies in the vicinity of the origin (termed f = 0) and negligible elsewhere. In telecommunications and signal processing, baseband signals are transmitted without modulation, that is, without any shift in the range of frequencies of the signal. Baseband has a low-frequency—contained within the bandwidth frequency close to 0 hertz up to a higher cut-off frequency. Baseband can be synonymous with lowpass or non-modulated, and is differentiated from passband, bandpass, carrier-modulated, intermediate frequency, or radio frequency (RF).
A baseband bandwidth is equal to the highest frequency of a signal or system, or an upper bound on such frequencies, for example the upper cut-off frequency of a Lowpass filter. By contrast, passband bandwidth is the difference between a highest frequency and a nonzero lowest frequency.
A baseband channel or lowpass channel (or system, or network) is a communication channel that can transfer frequencies that are very near zero. Examples are serial cables and local area networks (LANs), as opposed to passband channels such as radio frequency channels and passband filtered wires of the analog telephone network. Frequency division multiplexing (FDM) allows an analog telephone wire to carry a baseband telephone call, concurrently as one or several carrier-modulated telephone calls.
Digital baseband transmission, also known as line coding, aims at transferring a digital bit stream over baseband channel, typically an unfiltered wire, contrary to passband transmission, also known as carrier-modulated transmission. Passband transmission makes communication possible over a bandpass filtered channel, such as the telephone network local-loop or a band-limited wireless channel.