*** Welcome to piglix ***

Basal transcription factor


General transcription factors (GTFs), also known as basal transcriptional factors, are a class of protein transcription factors that bind to specific sites (promoter) on DNA to activate transcription of genetic information from DNA to messenger RNA. GTFs, RNA polymerase, and the multiple-protein complex known as Mediator constitute the basic transcriptional apparatus that first bind to the promoter, then start transcription. GTFs are also intimately involved in the process of gene regulation, and most are required for life.

A transcription factor is a protein that binds to specific DNA sequences (enhancer or promoter), either alone or with other proteins in a complex, to control the rate of transcription of genetic information from DNA to messenger RNA by promoting (serving as an activator) or blocking (serving as a repressor) the recruitment of RNA polymerase. As a class of protein, general transcription factors bind to promoters along the DNA sequence or form a large transcription preinitiation complex to activate transcription. General transcription factors are necessary for transcription to occur.

In bacteria, transcription initiation requires an RNA polymerase and a single GTF: sigma factor.

In archaea and eukaryotes, transcription initiation requires an RNA polymerase and a set of multiple GTFs to form a transcription preinitiation complex. The Transcription initiation by eukaryotic RNA polymerase II involves the following GTFs:

A sigma factor is a protein needed only for initiation of RNA synthesis in bacteria. Sigma factors provide promoter recognition specificity to the RNA polymerase (RNAP) and contribute to DNA strand separation, then dissociating from the RNA polymerase core enzyme following transcription initiation. The RNA polymerase core associates with the sigma factor to form RNA polymerase holoenzyme. Sigma factor reduces the affinity of RNA polymerase for nonspecific DNA while increasing specificity for promoters, allowing transcription to initiate at correct sites. The core enzyme of RNA polymerase has five subunits (protein subunits) (~400 kDa). Because of the RNA polymerase association with sigma factor, the complete RNA polymerase therefore has 6 subunits: the sigma subunit-in addition to the two alpha (α), one beta (β), one beta prime (β'), and one omega (ω) subunits that make up the core enzyme(~450 kDa). In addition, many bacteria can have multiple alternative σ factors. The level and activity of the alternative σ factors are highly regulated and can vary depending on environmental or developmental signals.


...
Wikipedia

...