*** Welcome to piglix ***

Barium-137m

Main isotopes of barium
Iso­tope Decay
abun­dance half-life mode energy (MeV) pro­duct
130Ba 0.11% (0.5–2.7)×1021 y εε 2.620 130Xe
132Ba 0.10% is stable with 76 neutrons
133Ba syn 10.51 y ε 0.517 133Cs
134Ba 2.42% is stable with 78 neutrons
135Ba 6.59% is stable with 79 neutrons
136Ba 7.85% is stable with 80 neutrons
137Ba 11.23% is stable with 81 neutrons
138Ba 71.70% is stable with 82 neutrons
Standard atomic weight (Ar)
  • 137.327(7)

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, recently identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks). This nuclide decays by double-electron capture (absorbing two electrons and emitting two neutrons;) with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).

There are a total of thirty-three known radioisotopes in addition to 130Ba, but most of these are highly radioactive with half-lives in the several millisecond to several minute range. The only notable exceptions are 133Ba, which has a half-life of 10.51 years, 131Ba (11.5 days), and 137mBa (2.55 minutes), which is the decay product of 137Cs (30.17 years, and a common fission product).

Barium-114 is predicted to undergo cluster decay, emitting a nucleus of stable 12C to produce 102Sn. However this decay is not yet observed; the upper limit on the branching ratio of such decay is 0.0034%.



...
Wikipedia

...