|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight (Ar) |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, recently identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks). This nuclide decays by double-electron capture (absorbing two electrons and emitting two neutrons;) with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).
There are a total of thirty-three known radioisotopes in addition to 130Ba, but most of these are highly radioactive with half-lives in the several millisecond to several minute range. The only notable exceptions are 133Ba, which has a half-life of 10.51 years, 131Ba (11.5 days), and 137mBa (2.55 minutes), which is the decay product of 137Cs (30.17 years, and a common fission product).
Barium-114 is predicted to undergo cluster decay, emitting a nucleus of stable 12C to produce 102Sn. However this decay is not yet observed; the upper limit on the branching ratio of such decay is 0.0034%.