Bank switching is a technique used in computer design to increase the amount of usable memory beyond the amount directly addressable by the processor. It can be used to configure a system differently at different times; for example, a ROM required to start a system from diskette could be switched out when no longer needed. In video game systems, bank switching allowed larger games to be developed for play on existing consoles.
Bank switching originated in minicomputer systems. Many modern microcontrollers and microprocessors use bank switching to manage random-access memory, non-volatile memory, input-output devices and system management registers in small embedded systems. The technique was common in 8-bit microcomputer systems. Bank-switching may also be used to work around limitations in address bus width, where some hardware constraint prevents straightforward addition of more address lines. Some control-oriented microprocessors use a bank-switching technique to access internal I/O and control registers, which limits the number of register address bits that must be used in every instruction.
Unlike memory management by paging, data is not exchanged with a mass storage device like disk storage. Data remains in quiescent storage in a memory area that is not currently accessible to the processor, (although it may be accessible to the video display, DMA controller, or other subsystems of the computer).
Bank switching can be considered as a way of extending the address bus of a processor with some external register. For example, a processor with a 16-bit external address bus can only address 216 = 65536 memory locations. If an external latch was added to the system, it could be used to control which of two sets of memory devices, each with 65536 addresses, could be accessed. The processor could change which set is in current use by setting or clearing the latch bit.