*** Welcome to piglix ***

Background subtraction


Background subtraction, also known as foreground detection, is a technique in the fields of image processing and computer vision wherein an image's foreground is extracted for further processing (object recognition etc.). Generally an image's regions of interest are objects (humans, cars, text etc.) in its foreground. After the stage of image preprocessing (which may include image denoising, post processing like morphology etc.) object localisation is required which may make use of this technique.

Background subtraction is a widely used approach for detecting moving objects in videos from static cameras. The rationale in the approach is that of detecting the moving objects from the difference between the current frame and a reference frame, often called "background image", or "background model". Background subtraction is mostly done if the image in question is a part of a video stream. Background subtraction provides important cues for numerous applications in computer vision, for example surveillance tracking or human poses estimation.

Background subtraction is generally based on a static background hypothesis which is often not applicable in real environments. With indoor scenes, reflections or animated images on screens lead to background changes. Similarly, due to wind, rain or illumination changes brought by weather, static backgrounds methods have difficulties with outdoor scenes.

A robust background subtraction algorithm should be able to handle lighting changes, repetitive motions from clutter and long-term scene changes. The following analyses make use of the function of V(x,y,t) as a video sequence where t is the time dimension, x and y are the pixel location variables. e.g. V(1,2,3) is the pixel intensity at (1,2) pixel location of the image at t = 3 in the video sequence.

A motion detection algorithm begins with the segmentation part where foreground or moving objects are segmented from the background. The simplest way to implement this is to take an image as background and take the frames obtained at the time t, denoted by I(t) to compare with the background image denoted by B. Here using simple arithmetic calculations, we can segment out the objects simply by using image subtraction technique of computer vision meaning for each pixels in I(t), take the pixel value denoted by P[I(t)] and subtract it with the corresponding pixels at the same position on the background image denoted as P[B].

In mathematical equation, it is written as:

The background is assumed to be the frame at time t. This difference image would only show some intensity for the pixel locations which have changed in the two frames. Though we have seemingly removed the background, this approach will only work for cases where all foreground pixels are moving and all background pixels are static. A threshold "Threshold" is put on this difference image to improve the subtraction (see Image thresholding).


...
Wikipedia

...