In mathematics, the Babenko–Beckner inequality (after K. Ivan Babenko and William E. Beckner) is a sharpened form of the Hausdorff–Young inequality having applications to uncertainty principles in the Fourier analysis of Lp spaces. The (q, p)-norm of the n-dimensional Fourier transform is defined to be
In 1961, Babenko found this norm for even integer values of q. Finally, in 1975, using Hermite functions as eigenfunctions of the Fourier transform, Beckner proved that the value of this norm for all is
Thus we have the Babenko–Beckner inequality that
To write this out explicitly, (in the case of one dimension,) if the Fourier transform is normalized so that
then we have
or more simply
Throughout this sketch of a proof, let
(Except for q, we will more or less follow the notation of Beckner.)
Let be the discrete measure with weight at the points Then the operator