*** Welcome to piglix ***

B. infantis

Bifidobacterium longum
Scientific classification
Domain: Bacteria
Phylum: Actinobacteria
Class: Actinobacteria
Order: Bifidobacteriales
Family: Bifidobacteriaceae
Genus: Bifidobacterium
Species: B. longum
Binomial name
Bifidobacterium longum
Reuter

Bifidobacterium longum is a Gram-positive, catalase-negative, rod-shaped bacterium present in the human gastrointestinal tract and one of the 32 species that belong to the genus Bifidobacterium. It is a microaerotolerant anaerobe and considered to be one of the earliest colonizers of the gastrointestinal tract of infants. When grown on general anaerobic medium, B. longum forms white, glossy colonies with a convex shape. While B. longum is not significantly present in the adult gastrointestinal tract, it is considered part of the gut flora and its production of lactic acid is believed to prevent growth of pathogenic organisms.B. longum is non-pathogenic and is often added to food products.

In 2002, three previously distinct species of Bifidobacterium, B. infantis, B. longum, and B. suis, were unified into a single species named B. longum with the biotypes infantis, longum, and suis, respectively. This occurred as the three species had extensive DNA similarity including a 16s rRNA gene sequence similarity greater than 97%. In addition, the three original species were phenotypically difficult to distinguish due to different carbohydrate fermentation patterns among strains of the same species. As probiotic activity varies among strains of B. longum, interest exists in the exact classification of new strains, although this is made difficult by the high gene similarity between the three biotypes. Currently, strain identification is done through polymerase chain reaction (PCR) on the subtly different 16s rRNA gene sequences.

B. longum colonizes the human gastrointestinal tract, where it, along with other Bifidobacterium species, represents up to 90% of the bacteria of an infant’s gastrointestinal tract. This number gradually drops to 3% in an adult’s gastrointestinal tract as other enteric bacteria such as Bacteroides and Eubacterium begin to dominate. Some strains of B. longum were found to have high tolerance for gastric acid and bile, suggesting that these strains would be able to survive the gastrointestinal tract to colonize the lower small and large intestines. The persistence of B. longum in the gut is attributed to the glycoprotein-binding fimbriae structures and bacterial polysaccharides, the latter of which possess strong electrostatic charges that aid in the adhesion of B. longum to intestinal endothelial cells. This adhesion is also enhanced by the fatty acids in the lipoteichoic acid of the B. longum cell wall.


...
Wikipedia

...