*** Welcome to piglix ***

Axiom A


In mathematics, Smale's axiom A defines a class of dynamical systems which have been extensively studied and whose dynamics is relatively well understood. A prominent example is the Smale horseshoe map. The term "axiom A" originates with Stephen Smale. The importance of such systems is demonstrated by the chaotic hypothesis, which states that, 'for all practical purposes', a many-body thermostatted system is approximated by an Anosov system.

Let M be a smooth manifold with a diffeomorphism f: MM. Then f is an axiom A diffeomorphism if the following two conditions hold:

For surfaces, hyperbolicity of the nonwandering set implies the density of periodic points, but this is no longer true in higher dimensions. Nonetheless, axiom A diffeomorphisms are sometimes called hyperbolic diffeomorphisms, because the portion of M where the interesting dynamics occurs, namely, Ω(f), exhibits hyperbolic behavior.

Axiom A diffeomorphisms generalize Morse–Smale systems, which satisfy further restrictions (finitely many periodic points and transversality of stable and unstable submanifolds). Smale horseshoe map is an axiom A diffeomorphism with infinitely many periodic points and positive topological entropy.

Any Anosov diffeomorphism satisfies axiom A. In this case, the whole manifold M is hyperbolic (although it is an open question whether the non-wandering set Ω(f) constitutes the whole M).

Rufus Bowen showed that the non-wandering set Ω(f) of any axiom A diffeomorphism supports a Markov partition. Thus the restriction of f to a certain generic subset of Ω(f) is conjugated to a shift of finite type.


...
Wikipedia

...