Description | Size | Ref |
---|---|---|
Lighting conditions | any | |
Global landing precision | ±90 m | |
Local landing precision | ±3 m | |
detects hazard elevation (rocks) | > 30 cm | |
detects hazard slopes | > 5° | |
Dimensions | (TBD) | – |
Mass | 400 lb | |
Class of lasers | IV |
Autonomous Landing Hazard Avoidance Technology (ALHAT) is technology NASA is developing to autonomously land spacecraft on the Moon, Mars or even an asteroid.
According to the NASA web page on the project, it will provide state-of-the-art automated descent and landing system for planetary lander craft. A surface-tracking sensor suite with real-time hazard avoidance capabilities will assess altitude and velocity of the descending vehicle and the topography of the landing site to permit precision landing. The descending craft will use the ALHAT algorithms combined with sensor data to navigate to the "pre-mission landing aim point," where it will autonomously identify safe landing areas and guide the craft to touchdown. The technology will work in any lighting conditions, from the harsh glare of an unshielded Sun to the cloudy, gaseous murk of a distant Solar System body.
A landing craft equipped with ALHAT will have the ability to detect and avoid obstacles such as craters, rocks and slopes and land safely and precisely on a surface. The project is led by Johnson Space Center (JSC) and supported by Jet Propulsion Laboratory (JPL) and Langley Research Center. Some of the sensors may also be used to help spacecraft dock.
The ALHAT technologies include a Hazard Detection System, a lidar Doppler velocimeter, a laser altimeter, software, sensor algorithms and path-to-space computer processors. These technologies integrate with the lander’s onboard navigation instrumentation. The equipment has a mass of 400 lb (180 kg).
The instrumentation has been tested by operating from moving vehicles – a truck, NASA's Huey helicopter and the Project Morpheus lander. At the end of testing the project is aiming for the ALHAT equipment to have reached Technology Readiness Level (TRL) 6.
Resources needed by future expeditions will frequently be situated in potentially hazardous terrain, consequently robotic and human explorers need to land safely near to these resources. This requires a new generation of planetary landers with the ability to automatically recognize their desired landing site, assess potential landing hazards and adjust as they descend to the surface. NASA Langley created three lidar (light radar) sensors: the flash lidar, Doppler lidar and high-altitude laser altimeter for the ALHAT project.