An automotive thermoelectric generator (ATEG) is a device that converts some of the waste heat of an internal combustion engine (IC) into electricity using the Seebeck Effect. A typical ATEG consists of four main elements: A hot-side heat exchanger, a cold-side heat exchanger, thermoelectric materials, and a compression assembly system. ATEGs can convert waste heat from an engine's coolant or exhaust into electricity. By reclaiming this otherwise lost energy, ATEGs decrease fuel consumed by the electric generator load on the engine. However, the cost of the unit and the extra fuel consumed due to its weight must be also considered.
In ATEGs, thermoelectric materials are packed between the hot-side and the cold-side heat exchangers. The thermoelectric materials are made up of p-type and n-type semiconductors, while the heat exchangers are metal plates with high thermal conductivity.
The temperature difference between the two surfaces of the thermoelectric module(s) generates electricity using the Seebeck Effect. When hot exhaust from the engine passes through an exhaust ATEG, the charge carriers of the semiconductors within the generator diffuse from the hot-side heat exchanger to the cold-side exchanger. The build-up of charge carriers results in a net charge, producing an electrostatic potential while the heat transfer drives a current. With exhaust temperatures of 700 °C (~1300 °F) or more, the temperature difference between exhaust gas on the hot side and coolant on the cold side is several hundred degrees. This temperature difference is capable of generating 500-750 W of electricity.
The compression assembly system aims to decrease the thermal contact resistance between the thermoelectric module and the heat exchanger surfaces. In coolant-based ATEGs, the cold side heat exchanger uses engine coolant as the cooling fluid, while in exhaust-based ATEGs, the cold-side heat exchanger uses ambient air as the cooling fluid.
Currently, ATEGs are about 5% efficient. However, advancements in thin-film and quantum well technologies could increase efficiency up to 15% in the future.