*** Welcome to piglix ***

Atomic magnetometer


A spin exchange relaxation-free (SERF) magnetometer is a type of magnetometer developed at Princeton University in the early 2000s. SERF magnetometers measure magnetic fields by using lasers to detect the interaction between alkali metal atoms in a vapor and the magnetic field.

The name for the technique comes from the fact that spin exchange relaxation, a mechanism which usually scrambles the orientation of atomic spins, is avoided in these magnetometers. This is done by using a high (1014 cm−3) density of potassium atoms and a very low magnetic field. Under these conditions, the atoms exchange spin quickly compared to their magnetic precession frequency so that the average spin interacts with the field and is not destroyed by decoherence.

A SERF magnetometer achieves very high magnetic field sensitivity by monitoring a high density vapor of alkali metal atoms precessing in a near-zero magnetic field. The sensitivity of SERF magnetometers improves upon traditional atomic magnetometers by eliminating the dominant cause of atomic spin decoherence caused by spin-exchange collisions among the alkali metal atoms. SERF magnetometers are among the most sensitive magnetic field sensors and in some cases exceed the performance of SQUID detectors of equivalent size. A small 1 cm3 volume glass cell containing potassium vapor has reported 1 fT/√Hz sensitivity and can theoretically become even more sensitive with larger volumes. They are vector magnetometers capable of measuring all three components of the magnetic field simultaneously.

Spin-exchange collisions preserve total angular momentum of a colliding pair of atoms but can scramble the hyperfine state of the atoms. Atoms in different hyperfine states do not precess coherently and thereby limit the coherence lifetime of the atoms. However, decoherence due to spin-exchange collisions can be nearly eliminated if the spin-exchange collisions occur much faster than the precession frequency of the atoms. In this regime of fast spin-exchange, all atoms in an ensemble rapidly change hyperfine states, spending the same amounts of time in each hyperfine state and causing the spin ensemble to precess more slowly but remain coherent. This so-called SERF regime can be reached by operating with sufficiently high alkali metal density (at higher temperature) and in sufficiently low magnetic field.


...
Wikipedia

...