The atom probe was introduced at the 14th Field Emission Symposium in 1967 by Erwin Wilhelm Müller and J. A. Panitz. It combined a field ion microscope with a mass spectrometer having a single particle detection capability and, for the first time, an instrument could “... determine the nature of one single atom seen on a metal surface and selected from neighboring atoms at the discretion of the observer”.
Atom probes are unlike conventional optical or electron microscopes, in that the magnification effect comes from the magnification provided by a highly curved electric field, rather than by the manipulation of radiation paths. The method is destructive in nature removing ions from a sample surface in order to image and identify them, generating magnifications sufficient to observe individual atoms as they are removed from the sample surface. Through coupling of this magnification method with time of flight mass spectrometry, ions evaporated by application of electric pulses can have their mass-to-charge ratio computed.
Through successive evaporation of material, layers of atoms are removed from a specimen, allowing for probing not only of the surface, but also through the material itself. Computer methods are utilised to rebuild a three-dimensional view of the sample, prior to it being evaporated, providing atomic scale information on the structure of a sample, as well as providing the type atomic species information. The instrument allows the three-dimensional reconstruction of up to billions of atoms from a sharp tip (corresponding to specimen volumes of 10,000-10,000,000 nm3).
Atom probe samples are shaped to implicitly provide a highly curved electric potential to induce the resultant magnification, as opposed to direct use of lensing, such as via magnetic lenses. Furthermore, in normal operation (as opposed to a field ionization modes) the atom probe does not utilize a secondary source to probe the sample. Rather, the sample is evaporated in a controlled manner (field evaporation) and the evaporated ions are impacted onto a detector, which is typically 10 to 100 cm away.
The samples are required to have a needle geometry and are produced by similar techniques as TEM sample preparation electropolishing, or focused ion beam methods. Since 2006, commercial systems with laser pulsing have become available and this has expanded applications from metallic only specimens into semiconducting, insulating such as ceramics, and even geological materials. Preparation is done, often by hand, to manufacture a tip radius sufficient to induce a high electric field, with radii on the order of 100 nm.