The atmosphere of Triton is the layer of gases surrounding Triton. The surface pressure is only 14 microbars, 1/70,000th of the surface pressure on Earth, and it is composed of nitrogen, similar to those of Titan and Earth. It extends 800 kilometers above its surface. Recent observations have shown an increase in temperature.
Nitrogen is the main gas in Triton's atmosphere. The two other known components are methane and carbon monoxide, whose abundances are a few hundredths of a percent of that of the nitrogen. Carbon monoxide, which was discovered only in 2010 by the ground-based observations, is slightly more abundant than methane. The abundance of methane relative to nitrogen increased by four to five times since 1986 due to the seasonal warming observed on Triton, which passed its solstice in 2001.
Other possible components of the Triton's atmosphere include argon and neon. Because they were not detected in the ultraviolet part of the spectrum of Triton obtained by Voyager 2 in 1989, their abundances are unlikely to exceed a few percent. In addition to the gases mentioned above, the upper atmosphere contains significant amounts of both molecular and atomic hydrogen, which is produced by the photolysis of methane. This hydrogen quickly escapes into the space serving as a source of plasma in the magnetosphere of Neptune.
Other Solar System planets and moons with atmospheres of similar composition include Earth, Titan, Pluto and, possibly, Eris.
Triton's atmosphere is well structured and global. The atmosphere extends up to 800 kilometers above the surface, where the exobase is located, and had a surface pressure of about 14 microbars as of 1989. This is only 1/70,000th of the surface pressure on Earth. The surface temperature was at least 35.6 K (−237.6 °C) because Triton's nitrogen ice is in the warmer, hexagonal crystalline state, and the phase transition between hexagonal and cubic nitrogen ice occurs at that temperature. An upper limit in the low 40s (K) can be set from vapor pressure equilibrium with nitrogen gas in Triton's atmosphere. The most likely temperature was ±1 K as of 1989. In the 1990s it probably increased by about 1 K, due to the general global warming as Triton approaches the southern-hemisphere summer (see below). 38