In mathematics, the Atiyah–Hirzebruch spectral sequence is a spectral sequence for calculating generalized cohomology, introduced by Atiyah & Hirzebruch (1961) in the special case of topological K-theory. For a CW complex and a generalized cohomology theory , it relates the generalized cohomology groups
with 'ordinary' cohomology groups with coefficients in the generalized cohomology of a point. More precisely, the term of the spectral sequence is , and the spectral sequence converges conditionally to .