*** Welcome to piglix ***

Asteroid spectral type


Asteroids are assigned a type based on spectral shape, color, and sometimes albedo. These types are thought to correspond to an asteroid's surface composition. For small bodies that are not internally differentiated, the surface and internal compositions are presumably similar, while large bodies such as 1 Ceres and 4 Vesta are known to have internal structure.

A list of types can be found at Category:Asteroid spectral classes.

The present-day classification was initiated by Clark R. Chapman, David Morrison, and Ben Zellner in 1975 with three categories:C for dark carbonaceous objects, S for stony (silicaceous) objects, and U for those that did not fit into either C or S. This classification has since been expanded and clarified.

A number of classification schemes are currently in existence, and while they strive to retain some mutual consistency, quite a few asteroids are sorted into different classes depending on the particular scheme. This is due to the use of different criteria for each approach. The two most widely used classifications are described below:

The most widely used taxonomy for over a decade has been that of David J. Tholen, first proposed in 1984. This classification was developed from broad band spectra (between 0.31 μm and 1.06 μm) obtained during the Eight-Color Asteroid Survey (ECAS) in the 1980s, in combination with albedo measurements. The original formulation was based on 978 asteroids.

This scheme includes 14 types with the majority of asteroids falling into one of three broad categories, and several smaller types. They are, with their largest exemplars:

and the small classes:

Objects were sometimes assigned a combined type such as e.g. CG when their properties were a combination of those typical for several types.

This is a more recent taxonomy introduced by Schelte J. Bus and Richard P. Binzel in 2002, based on the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) of 1,447 asteroids. This survey produced spectra of a far higher resolution than ECAS, and was able to resolve a variety of narrow spectral features. However, a somewhat smaller range of wavelengths (0.44 μm to 0.92 μm) was observed. Also, albedos were not considered. Attempting to keep to the Tholen taxonomy as much as possible given the differing data, asteroids were sorted into the 26 types given below. The majority of bodies fall again into the three broad C, S, and X categories, with a few unusual bodies categorized into several smaller types:


...
Wikipedia

...