An asphyxiant gas is a nontoxic or minimally toxic gas which reduces or displaces the normal oxygen concentration in breathing air. Breathing of oxygen-depleted air can lead to death by asphyxiation (suffocation). Because asphyxiant gases are relatively inert and odorless, their presence in high concentration may not be noticed, except in the case of carbon dioxide (hypercapnia).
Toxic gases, by contrast, cause death by other mechanisms, such as competing with oxygen on the cellular level (e.g. carbon monoxide) or directly damaging the respiratory system (e.g. phosgene). Far smaller quantities of these are deadly.
Notable examples of asphyxiant gases are nitrogen, argon, helium, butane and propane. Along with trace gases such as carbon dioxide and ozone, these compose 79% of Earth's atmosphere. The atmosphere is mostly harmless because the remaining 21% is O2.
Asphyxiant gases in the breathing air are normally not hazardous. Only where elevated concentrations of asphyxiant gases displace the normal oxygen concentration does a hazard exist. Examples are:
The risk of breathing asphyxiant gases is frequently underestimated leading to fatalities, typically from breathing helium in domestic circumstances and nitrogen in industrial environments.
The term asphyxiation is often mistakenly associated with the strong desire to breathe that occurs if breathing is prevented. This desire is stimulated from increasing levels of carbon dioxide. However, asphyxiant gases may displace carbon dioxide along with oxygen, preventing the victim from feeling short of breath. In addition the gases may also displace oxygen from cells, leading to loss of consciousness and death rapidly.