*** Welcome to piglix ***

Arrow–Debreu–McKenzie model


In mathematical economics, the Arrow–Debreu model suggests that under certain economic assumptions (convex preferences, perfect competition, and demand independence) there must be a set of prices such that aggregate supplies will equal aggregate demands for every commodity in the economy.

The model is central to the theory of general (economic) equilibrium and it is often used as a general reference for other microeconomic models. It is named after Kenneth Arrow, Gérard Debreu, and sometimes also Lionel W. McKenzie for his independent proof of equilibrium existence in 1954 as well as his later improvements in 1959.

The A-D model is one of the most general models of competitive economy and is a crucial part of general equilibrium theory, as it can be used to prove the existence of general equilibrium (or Walrasian equilibrium) of an economy. In general, there may be many equilibria; however, with extra assumptions on consumer preferences, namely that their utility functions be strongly concave and twice continuously differentiable, a unique equilibrium exists. With weaker conditions, uniqueness can fail, according to the Sonnenschein–Mantel–Debreu theorem.

In 1954, McKenzie and the pair Arrow and Debreu independently proved the existence of general equilibria by invoking the Kakutani fixed-point theorem on the fixed points of a continuous function from a compact, convex set into itself. In the Arrow–Debreu approach, convexity is essential, because such fixed-point theorems are inapplicable to non-convex sets. For example, the rotation of the unit circle by 90 degrees lacks fixed points, although this rotation is a continuous transformation of a compact set into itself; although compact, the unit circle is non-convex. In contrast, the same rotation applied to the convex hull of the unit circle leaves the point (0,0) fixed. Notice that the Kakutani theorem does not assert that there exists exactly one fixed point. Rotating the unit disk by 360 degrees leaves the entire unit disk fixed, so that this rotation has an infinite number of fixed points.


...
Wikipedia

...