Array Processing: Signal Processing is a wide area of research that extends from the simplest form of 1-D signal processing to the complex form of M-D and array signal processing. This article presents a short survey of the concepts, principles and applications of Array Processing. Array structure can be defined as a set of sensors that are spatially separated, e.g. antennas. The basic problem that we attend to solve by using array processing technique(s) is to:
Precisely, we are interested in solving these problems in noisy environments (in the presence of noise and interfering signals). Estimation Theory is an important and basic part of signal processing field, which used to deal with estimation problem in which the values of several parameters of the system should be estimated based on measured/empirical data that has a random component. As the number of applications increases, estimating temporal and spatial parameters become more important. Array processing emerged in the last few decades as an active area and was centered on the ability of using and combining data from different sensors (antennas) in order to deal with specific estimation task (spatial and temporal processing). In addition to the information that can be extracted from the collected data the framework uses the advantage prior knowledge about the geometry of the sensor array to perform the estimation task. Array processing is used in radar, sonar, seismic exploration, anti-jamming and wireless communications. One of the main advantages of using array processing along with an array of sensors is a smaller foot-print. The problems associated with array processing include the number of sources used, their direction of arrivals, and their signal waveforms.
There are four assumptions in array processing. The first assumption is that there is uniform propagation in all directions of isotropic and non-dispersive medium. The second assumption is that for far field array processing, the radius of propagation is much greater than size of the array and that there is plane wave propagation. The third assumption is that there is a zero mean white noise and signal, which shows uncorrelation. Finally, the last assumption is that there is no coupling and the calibration is perfect.
The ultimate goal of sensor array signal processing is to estimate the values of parameters by using available temporal and spatial information, collected through sampling a wavefield with a set of antennas that have a precise geometry description. The processing of the captured data and information is done under the assumption that the wavefield is generated by a finite number of signal sources (emitters), and contains information about signal parameters characterizing and describing the sources. There are many applications related to the above problem formulation, where the number of sources, their directions and locations should be specified. To motivate the reader, some of the most important applications related to array processing will be discussed.