Argument-deduction-proof distinctions originated with logic itself. Naturally, the terminology evolved.
An argument, more fully a premise-conclusion argument, is a two-part system composed of premises and conclusion. An argument is valid if and only if its conclusion is a consequence of its premises. Every premise set has infinitely many consequences each giving rise to a valid argument. Some consequences are obviously so but most are not: most are hidden consequences. Most valid arguments are not yet known to be valid. To determine validity in non-obvious cases deductive reasoning is required. There is no deductive reasoning in an argument per se; such must come from the outside.
Every argument's premises are conclusions of other arguments. Every argument's conclusion is a premise of other arguments. The word constituent may be used for either a premise or conclusion.In the context of this article and in most classical contexts, all candidates for consideration as argument constituents fall under the category of truth-bearer: propositions, statements, sentences, judgments, etc.
A deduction is a three-part system composed of premises, a conclusion, and chain of intermediates — steps of reasoning showing that its conclusion is a consequence of its premises. The reasoning in a deduction is by definition cogent. Such reasoning itself, or the chain of intermediates representing it, has also been called an argument, more fully a deductive argument. In many cases, an argument can be known to be valid by means of a deduction of its conclusion from its premises but non-deductive methods such as Venn diagrams and other graphic procedures have been proposed.
A proof is a deduction whose premises are known truths. A proof of the Pythagorean theorem is a deduction that might use several premises — axioms, postulates, and definitions — and contain dozens of intermediate steps. As Alfred Tarski famously emphasized in accord with Aristotle, truths can be known by proof but proofs presuppose truths not known by proof.