*** Welcome to piglix ***

Arf invariant of a knot


In the mathematical field of knot theory, the Arf invariant of a knot, named after Cahit Arf, is a knot invariant obtained from a quadratic form associated to a Seifert surface. If F is a Seifert surface of a knot, then the homology group H1(FZ/2Z) has a quadratic form whose value is the number of full twists mod 2 in a neighborhood of an imbedded circle representing an element of the homology group. The Arf invariant of this quadratic form is the Arf invariant of the knot.

Let be a Seifert matrix of the knot, constructed from a set of curves on a Seifert surface of genus g which represent a basis for the first homology of the surface. This means that V is a 2g × 2g matrix with the property that V − VT is a symplectic matrix. The Arf invariant of the knot is the residue of

Specifically, if , is a symplectic basis for the intersection form on the Seifert surface, then


...
Wikipedia

...