Apodization is an optical filtering technique, and its literal translation is "removing the foot". It is the technical term for changing the shape of a mathematical function, an electrical signal, an optical transmission or a mechanical structure. In optics, it is primarily used to remove Airy disks caused by diffraction around an intensity peak, improving the focus.
The term apodization is used frequently in publications on Fourier transform infrared (FTIR) signal processing. An example of apodization is the use of the Hann window in the Fast Fourier transform analyzer to smooth the discontinuities at the beginning and end of the sampled time record.
An apodizing filter can be used in digital audio processing instead of the more common brickwall filters, in order to avoid the pre-ringing that the latter introduces.
In optical design jargon, an apodization function is used to purposely change the input intensity profile of an optical system, and may be a complicated function to tailor the system to certain properties. Usually it refers to a non-uniform illumination or transmission profile that approaches zero at the edges.
The diaphragm of a photo camera is not strictly an example of apodization, since the stop doesn't produce a smooth transition to zero intensity, nor does it provide shaping of the intensity profile (beyond the obvious all-or-nothing, "top hat" transmission of its aperture).
The Minolta/Sony Smooth Trans Focus 135mm f/2.8 [T4.5] lens, however, is a special lens design introduced in 1999, which accomplishes this by utilizing a concave neutral-gray tinted lens element as apodization filter, thereby producing a pleasant bokeh. The same optical effect can be achieved combining depth-of-field bracketing with multi exposure, as implemented in the Minolta Maxxum 7's STF function.