*** Welcome to piglix ***

Antimatter weapon


An antimatter weapon is a hypothetical device using antimatter as a power source, a propellant, or an explosive for a weapon. Antimatter weapons are not thought to currently exist due to the cost of production and the limited technology available to produce and contain antimatter in sufficient quantities for it to be a useful weapon. The United States Air Force, however, has been interested in military uses – including applications – of antimatter since the Cold War, when it began funding antimatter-related physics research. The primary theoretical advantage of such a weapon is that antimatter and matter collisions convert and produce a greater fraction of the weapon's mass into explosive energy when compared to a hydrogen fusion reaction, which is only on the order of 0.4%. The basic equation governing the antimatter reaction is Einstein's famous E = mc2, but, since a given mass of antimatter needs an equal mass of ordinary matter with which to react, this effectively becomes E = 2mc2. Therefore, a gram of antimatter would need a gram of ordinary matter to release its energy and the energy developed would be 2×10−3(3×108)2 = 1.8×1014 joules. Using the convention that 1 kiloton TNT equivalent = 4.184×1012 joules, the gram of antimatter reacting with its ordinary matter counterpart gives 43 kilotons of explosive force.

Antimatter production and containment are major obstacles to the creation of antimatter weapons. Quantities measured in grams will be required to achieve destructive effect comparable with conventional nuclear weapons; one gram of antimatter annihilating with one gram of matter produces 180 terajoules, the equivalent of 42.96 kilotons of TNT (approximately three times the bomb dropped on Hiroshima – and as such enough to power an average city for an extensive amount of time).

In reality, however, most known technologies for producing antimatter involve particle accelerators, and they are currently still highly inefficient and expensive. The production rate per year is only 1 to 10 nanograms. In 2008, the annual production of antiprotons at the Antiproton Decelerator facility of CERN was several picograms at a cost of US$20 million. Thus, at the current level of production, an equivalent of a 10 Mt hydrogen bomb, about 250 grams of antimatter will take 2.5 billion years of the energy production of the entire Earth to produce. A milligram of antimatter will take 100,000 times the annual production rate to produce (or 100,000 years). It will take billions of years for the current production rate to make an equivalent of current typical hydrogen bombs. For example, an equivalent of the Hiroshima atomic bomb will take half a gram of antimatter, but will take CERN two million years to produce at the current production rate.


...
Wikipedia

...