*** Welcome to piglix ***

Antifragility


Antifragility is a property of systems that increase in capability, resilience, or robustness as a result of stressors, shocks, volatility, noise, mistakes, faults, attacks, or failures. It is a concept developed by Professor Nassim Nicholas Taleb in his book, Antifragile and in technical papers. As Taleb explains in his book, antifragility is fundamentally different from the concepts of resiliency (i.e. the ability to recover from failure) and robustness (that is, the ability to resist failure). The concept has been applied in risk analysis, physics, molecular biology, transportation planning, engineering, Aerospace (NASA), and computer science.

Taleb defines it as follows in Nature:

Simply, antifragility is defined as a convex response to a stressor or source of harm (for some range of variation), leading to a positive sensitivity to increase in volatility (or variability, stress, dispersion of outcomes, or uncertainty, what is grouped under the designation "disorder cluster"). Likewise fragility is defined as a concave sensitivity to stressors, leading a negative sensitivity to increase in volatility. The relation between fragility, convexity, and sensitivity to disorder is mathematical, obtained by theorem, not derived from empirical data mining or some historical narrative. It is a priori".

In his book, Taleb stresses the differences between antifragile and robust/resilient. "Antifragility is beyond resilience or robustness. The resilient resists shocks and stays the same; the antifragile gets better."

An adaptive system is one that changes its behavior based on information available at time of utilization (as opposed to having the behavior defined during system design). This characteristic is sometimes referred to as cognitive. While adaptive systems allow for robustness under a variety of scenarios (often unknown during system design), they are not necessarily antifragile. In other words, the difference between antifragile and adaptive is the difference between a system that is robust under volatile environments/conditions, and one that is robust in a previously unknown environment.

The concept has been applied in physics,risk analysis,molecular biology,transportation planning,engineering, Aerospace (NASA), megaproject management, and computer science.


...
Wikipedia

...