*** Welcome to piglix ***

Antenna aperture


In electromagnetics and antenna theory, antenna aperture, effective area, or receiving cross section is a measure of how effective an antenna is at receiving the power of radio waves. The aperture is defined as the area, oriented perpendicular to the direction of an incoming radio wave, which would intercept the same amount of power from that wave as is produced by the antenna receiving it. At any point, a beam of radio waves has an irradiance or power flux density (PFD) which is the amount of radio power passing through a unit area of one square meter. If an antenna delivers an output power of Po watts to the load connected to its output terminals when irradiated by a uniform field of power density PFD watts per square metre, the antenna's aperture Aeff in square metres is given by:

So the power output of an antenna in watts is equal to the power density of the radio waves in watts per square metre, multiplied by its aperture in square metres. The larger an antenna's aperture is, the more power it can collect from a given field of radio waves. To actually obtain the predicted power available Po, the polarization of the incoming waves must match the polarization of the antenna, and the load (receiver) must be impedance matched to the antenna's feedpoint impedance.

Although this concept is based on an antenna receiving a radio frequency wave, knowing Aeff directly supplies the (power) gain of that antenna. Due to reciprocity, an antenna's gain in receiving and transmitting are identical. Therefore, Aeff can just as well be used to compute the performance of a transmitting antenna. Note that Aeff is a function of the direction of the radio wave relative to the orientation of the antenna, since the gain of an antenna varies according to its radiation pattern. When no direction is specified, Aeff is understood to refer to its maximum value, with the antenna oriented so its main lobe, the axis of maximum sensitivity, is directed toward the source.


...
Wikipedia

...