Anisogamy (also called heterogamy) is the form of sexual reproduction that involves the union or fusion of two gametes, which differ in size and/or form. (The related adjectives are anisogamous and anisogamic). The smaller gamete is considered to be male (sperm cell), whereas the larger gamete is regarded as female (egg cell).
There are several types of anisogamy. Both gametes may be flagellated and therefore motile. Alternatively, both of the gametes may be non-flagellated. The latter situation occurs in some algae and plants. In the red alga Polysiphonia, non-motile eggs are fertilized by non-motile sperm. In flowering plants, the gametes are non-motile cells within gametophytes.
The form of heterogamy that occurs in animals, including humans, is oogamy. In oogamy, a large, non-motile egg (ovum) is fertilized by a small, motile sperm (spermatozoon). The egg is optimized for longevity, whereas the small sperm is optimized for motility and speed. The size and resources of the egg cell allow for the production of pheromones, which attract the swimming sperm cells.
Anisogamy is a fundamental concept of sexual dimorphism that helps explain phenotypic differences between sexes. In most species a male and female sex exist, both of which are optimized for reproductive potential. Due to their differently sized and shaped gametes, both males and females have developed physiological and behavioral differences that optimize the individual’s fecundity. Since most egg laying females typically must bear the offspring and have a more limited reproductive cycle, this typically makes females a limiting factor in the reproductive success rate of males in a species. This process is also true for females selecting males, and assuming that males and females are selecting for different traits in partners, would result in phenotypic differences between the sexes over many generations. This hypothesis, known as the Bateman’s Principle, is used to understand the evolutionary pressures put on males and females due to anisogamy. Although this assumption has criticism, it is a generally accepted model for sexual selection within anisogamous species. The selection for different traits depending on sex within the same species is known as sex-specific selection, and accounts for the differing phenotypes found between the sexes of the same species. This sex-specific selection between sexes over time also lead to the development of secondary sex characteristics, which assist males and females in reproductive success.