In statistics, an ancillary statistic is a statistic whose sampling distribution does not depend on the parameters of the model. An ancillary statistic is a pivotal quantity that is also a statistic. Ancillary statistics can be used to construct prediction intervals.
This concept was introduced by the statistical geneticist Sir Ronald Fisher.
Suppose X1, ..., Xn are independent and identically distributed, and are normally distributed with unknown expected value μ and known variance 1. Let
be the sample mean.
The following statistical measures of dispersion of the sample
are all ancillary statistics, because their sampling distributions do not change as μ changes. Computationally, this is because in the formulas, the μ terms cancel – adding a constant number to a distribution (and all samples) changes its sample maximum and minimum by the same amount, so it does not change their difference, and likewise for others: these measures of dispersion do not depend on location.
Conversely, given i.i.d. normal variables with known mean 1 and unknown variance σ2, the sample mean is not an ancillary statistic of the variance, as the sampling distribution of the sample mean is N(1, σ2/n), which does depend on σ 2 – this measure of location (specifically, its standard error) depends on dispersion.