*** Welcome to piglix ***

Amortized constant time


In computer science, amortized analysis is a method for analyzing a given algorithm's time complexity, or how much of a resource, especially time or memory in the context of computer programs, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time per operation can be too pessimistic.

While certain operations for a given algorithm may have a significant cost in resources, other operations may not be as costly. Amortized analysis considers both the costly and less costly operations together over the whole series of operations of the algorithm. This may include accounting for different types of input, length of the input, and other factors that affect its performance.

Amortized analysis initially emerged from a method called aggregate analysis, which is now subsumed by amortized analysis. The technique was first formally introduced by Robert Tarjan in his 1985 paper Amortized Computational Complexity, which addressed the need for a more useful form of analysis than the common probabilistic methods used. Amortization was initially used for very specific types of algorithms, particularly those involving binary trees and union operations. However, it is now ubiquitous and comes into play when analyzing many other algorithms as well.

The method requires knowledge of which series of operations are possible. This is most commonly the case with data structures, which have state that persists between operations. The basic idea is that a worst case operation can alter the state in such a way that the worst case cannot occur again for a long time, thus "amortizing" its cost.

There are generally three methods for performing amortized analysis: the aggregate method, the accounting method, and the potential method. All of these give the same answers, and their usage difference is primarily circumstantial and due to individual preference.

Consider a dynamic array that grows in size as more elements are added to it such as an ArrayList in Java. If we started out with a dynamic array of size 4, it would take constant time to push four elements onto it. Yet pushing a fifth element onto that array would take longer as the array would have to create a new array of double the current size (8), copy the old elements onto the new array, and then add the new element. The next three push operations would similarly take constant time, and then the subsequent addition would require another slow doubling of the array size.


...
Wikipedia

...