An Alu element is a short stretch of DNA originally characterized by the action of the Arthrobacter luteus (Alu) restriction endonuclease.Alu elements are the most abundant transposable elements, containing over one million copies dispersed throughout the human genome. They are derived from the small cytoplasmic 7SL RNA, a component of the signal recognition particle. Alu elements are highly conserved within primate genomes and originated in the genome of an ancestor of Supraprimates.
Alu insertions have been implicated in several inherited human diseases and in various forms of cancer.
The study of Alu elements has also been important in elucidating human population genetics and the evolution of primates, including the evolution of humans.
The Alu family is a family of repetitive elements in the human genome. Modern Alu elements are about 300 base pairs long and are therefore classified as short interspersed nuclear elements (SINEs) among the class of repetitive DNA elements. The typical structure is 5'Part A- A5TACA6 -Part B - PolyA Tail - 3', where Part A and Part B are similar nucleotide sequences. Expressed another way, it is believed modern Alu elements emerged from a head to tail fusion of two distinct FAMs (fossil antique monomers) over 100 mya, hence its dimeric structure of two similar, but distinct monomers (left and right arms) joined by an A-rich linker. The length of the polyA tail varies between Alu families.
There are over one million Alu elements interspersed throughout the human genome, and it is estimated that about 10.7% of the human genome consists of Alu sequences. However, less than 0.5% are polymorphic (i.e. they occur in more than one form or morph). In 1988, Jerzy Jurka and Temple Smith discovered that Alu elements were split in two major subfamilies known as AluJ and AluS, and other Alu subfamilies were also independently discovered by several groups. Later on, a sub-subfamily of AluS which included active Alu elements was given the separate name AluY. Dating back 65 million years, the AluJ lineage is the oldest and least active in the human genome. The younger AluS lineage is about 30 million years old and still contains some active elements. Finally, the AluY elements are the youngest of the three and have the greatest disposition to move along the human genome. The discovery of Alu subfamilies led to the hypothesis of master/source genes, and provided the definitive link between transposable elements (active elements) and interspersed repetitive DNA (mutated copies of active elements).