*** Welcome to piglix ***

Allelochemical


Allelopathy is a biological phenomenon by which an organism produces one or more biochemicals that influence the germination, growth, survival, and reproduction of other organisms. These biochemicals are known as allelochemicals and can have beneficial (positive allelopathy) or detrimental (negative allelopathy) effects on the target organisms and the community. Allelochemicals are a subset of secondary metabolites, which are not required for metabolism (i.e. growth, development and reproduction) of the allelopathic organism. Allelochemicals with negative allelopathic effects are an important part of plant defense against herbivory.

The production of allelochemicals are affected by biotic factors such as nutrients available, and abiotic factors such as temperature and pH.

Allelopathy is characteristic of certain plants, algae, bacteria, coral, and fungi. Allelopathic interactions are an important factor in determining species distribution and abundance within plant communities, and are also thought to be important in the success of many invasive plants. For specific examples, see spotted knapweed (Centaurea maculosa), garlic mustard (Alliaria petiolata), Casuarina/Allocasuarina spp., and nutsedge.

The process by which a plant acquires more of the available resources (such as nutrients, water or light) from the environment without any chemical action on the surrounding plants is called resource competition. This process is not negative allelopathy, although both processes can act together to enhance the survival rate of the plant species.

The term allelopathy from the Greek-derived compounds allelo- and -pathy (meaning "mutual harm" or "suffering"), was first used in 1937 by the Austrian professor Hans Molisch in the book Der Einfluss einer Pflanze auf die andere - Allelopathie (The Effect of Plants on Each Other - Allelopathy) published in German. He used the term to describe biochemical interactions that inhibit the growth of neighbouring plants, by another plant. In 1971, Whittaker and Feeny published a study in the journal Science, which defined allelochemicals as all chemical interactions among organisms. In 1984, Elroy Leon Rice in his monograph on allelopathy enlarged the definition to include all direct positive or negative effects of a plant on another plant or on micro-organisms by the liberation of biochemicals into the natural environment. Over the next ten years, the term was used by other researchers to describe broader chemical interactions between organisms, and by 1996 the International Allelopathy Society (IAS) defined allelopathy as "Any process involving secondary metabolites produced by plants, algae, bacteria and fungi that influences the growth and development of agriculture and biological systems." In more recent times, plant researchers have begun to switch back to the original definition of substances that are produced by one plant that inhibit another plant. Confusing the issue more, zoologists have borrowed the term to describe chemical interactions between invertebrates like corals and sponges.


...
Wikipedia

...