Alkaline water electrolysis | |
---|---|
Typical Materials | |
Type of Electrolysis: | Alkaline Water Electrolysis |
Style of membrane/diaphragm | NiO |
Bipolar/separator plate material | Stainless steel |
Catalyst material on the anode | Ni/Co/Fe |
Catalyst material on the cathode | Ni/C-Pt |
Anode PTL material | Ti/Ni/zirconium |
Cathode PTL material | Stainless steel mesh |
State-of-the-art Operating Ranges | |
Cell temperature | 60-80C |
Stack pressure | <30 bar |
Current density | 0.2-0.4 A/cm2 |
Cell voltage | 1.8-2.40 V |
Power density | to 1.0 W/cm2 |
Part-load range | 20-40% |
Spec. energy consumption stack | 4.2-5.9 kWh/Nm3 |
Spec. energy consumption system | 4.5-7.0 kWh/Nm3 |
Cell voltage efficiency | 52-69% |
System hydrogen production rate | <760 Nm3/h |
Lifetime stack | <90,000 h |
Acceptable degradation rate | <3 µV/h |
System Lifetime | 20-30 a |
Alkaline water electrolysis has a long history in the chemical industry. It is a type of electrolyzer that is characterized by having two electrodes operating in a liquid alkaline electrolyte solution of potassium hydroxide or sodium hydroxide. These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions from one electrode to the other. A recent comparison showed that state-of-the-art nickel based water electrolyzers with alkaline electrolytes lead to competitive or even better efficiencies than acidic polymer electrolyte membrane water electrolysis with platinum group metal based electrocatalysts.
Electrolysis requires minerals to be present in solution. Tap, well, and ground water contains various minerals, some of which are alkaline while others are acidic. Water above a pH of 7.0 is considered alkaline; below 7.0 it is acidic. Electrolysis can occur only if the water is acidic or alkaline. The requirement is that there must be ions in the water to conduct electricity for the water electrolysis process to occur.