*** Welcome to piglix ***

Agricultural biotechnology


Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop Biotechnology is one aspect of Agricultural Biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These Transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

Farmers have manipulated plants and animals through selective breeding for tens of thousands of years in order to create desired traits. In the 20th century, a surge in technology resulted in an increase in agricultural biotechnology through the selection of traits like increased yield, pest resistance, drought resistance, and herbicide resistance. The first food product produced through biotechnology was sold in 1990, and by 2003 7 million farmers were utilizing biotech crops. More than 85% of these farmers were located in developing countries.

Traditional crossbreeding has been used for centuries to improve crop quality and quantity. Crossbreeding mates two sexually compatible species to create a new variety with the desired traits of the parents. For example, the honeycrisp apple exhibits a specific texture and flavor due to the crossbreeding of its parents. In traditional practices, pollen from one plant is placed on the female part of another, which leads to a hybrid that contains genetic information from both parent plants. Plant breeders select the plants with the traits they’re looking to pass on and continue to breed those plants. Note that crossbreeding can only be utilized within the same or closely related species.

Mutations can occur randomly in the DNA of any organism. In order to create variety within crops, scientists can randomly induce mutations within plants. Mutagenesis uses radioactivity to induce random mutations in the hopes of stumbling upon the desired trait. Scientists can use mutating chemicals such as ethyl methanesulfonate, or radioactivity to create random mutations within the DNA. Atomic gardens are used to mutate crops. A radioactive core in located in the center of a circular garden and raised out of the ground to radiate the surrounding crops, generating mutations within a certain radius. Interestingly, mutagenesis through radiation was the process used to produce ruby red grapefruits.


...
Wikipedia

...