The lapse rate is the rate at which atmospheric temperature decreases with an increase in altitude. The terminology arises from the word lapse in the sense of a decrease or decline. While most often applied to Earth's troposphere, the concept can be extended to any gravitationally supported parcel of gas.
A formal definition from the Glossary of Meteorology is:
In general, a lapse rate is the negative of the rate of temperature change with altitude change, thus:
where is the lapse rate given in units of temperature divided by units of altitude, T = temperature, and z = altitude.
The temperature profile of the atmosphere is a result of an interaction between radiation and convection. Sunlight hits the ground and heats it. The ground then heats the air at the surface. If radiation were the only way to transfer heat from the ground to space, the greenhouse effect of gases in the atmosphere would keep the ground at roughly 333 K (60 °C; 140 °F), and the temperature would decay exponentially with height.
However, when air is hot, it tends to expand, which lowers its density. Thus, hot air tends to rise and transfer heat upward. This is the process of convection. Convection comes to equilibrium when a parcel of air at a given altitude has the same density as the other air at the same elevation.
When a parcel of air expands, it pushes on the air around it, doing work (thermodynamics). Since the parcel does work but gains no heat, it loses internal energy so that its temperature decreases. The process of expanding and contracting without exchanging heat is an adiabatic process. The term adiabatic means that no heat transfer occurs into or out of the parcel. Air has low thermal conductivity, and the bodies of air involved are very large, so transfer of heat by conduction is negligibly small.