Adaptive management (AM), also known as adaptive resource management (ARM) or adaptive environmental assessment and management (AEAM), is a structured, iterative process of robust decision making in the face of uncertainty, with an aim to reducing uncertainty over time via system monitoring. In this way, decision making simultaneously meets one or more resource management objectives and, either passively or actively, accrues information needed to improve future management. Adaptive management is a tool which should be used not only to change a system, but also to learn about the system. Because adaptive management is based on a learning process, it improves long-run management outcomes. The challenge in using the adaptive management approach lies in finding the correct balance between gaining knowledge to improve management in the future and achieving the best short-term outcome based on current knowledge. This approach has more recently been employed in implementing international development programs.
There are a number of scientific and social processes which are vital components of adaptive management, including:
The achievement of these objectives requires an open management process which seeks to include past, present and future stakeholders. Adaptive management needs to at least maintain political openness, but usually aims to create it. Adaptive management must therefore be a scientific and social process. It must focus on the development of new institutions and institutional strategies in balance with scientific hypothesis and experimental frameworks (resilliance.org).
Adaptive management can proceed as either passive adaptive management or active adaptive management, depending on how learning takes place. Passive adaptive management values learning only insofar as it improves decision outcomes (i.e. passively), as measured by the specified utility function. In contrast, active adaptive management explicitly incorporates learning as part of the objective function, and hence, decisions which improve learning are valued over those which do not. In both cases, as new knowledge is gained, the models are updated and optimal management strategies are derived accordingly. Thus, while learning occurs in both cases, it is treated differently. Often, deriving actively adaptive policies is technically very difficult, which prevents it being more commonly applied.