*** Welcome to piglix ***

Active and passive transformation


In physics and engineering, an active transformation, or alibi transformation, is a transformation which actually changes the physical position of a point, or rigid body, which can be defined even in the absence of a coordinate system; whereas a passive transformation, or alias transformation, is merely a change in the coordinate system in which the object is described (change of coordinate map, or change of basis). By default, by transformation, mathematicians usually refer to active transformations, while physicists and engineers could mean either.

Put differently, a passive transformation refers to description of the same object in two different coordinate systems. On the other hand, an active transformation is a transformation of one or more objects with respect to the same coordinate system. For instance, active transformations are useful to describe successive positions of a rigid body. On the other hand, passive transformations may be useful in human motion analysis to observe the motion of the tibia relative to the femur, that is, its motion relative to a (local) coordinate system which moves together with the femur, rather than a (global) coordinate system which is fixed to the floor.

As an example, in the vector space ℝ2, let {e1,e2} be a basis, and consider the vector v = v1e1 + v2e2. A rotation of the vector through angle θ is given by the rotation matrix:

which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.

As an active transformation, R rotates the initial vector v, and a new vector v' is obtained. For a counterclockwise rotation of v with respect to the fixed coordinate system:


...
Wikipedia

...