*** Welcome to piglix ***

Acrosin

Acrosin
1FIW.png
Identifiers
EC number 3.4.21.10
CAS number 9068-57-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO

Acrosin is a digestive enzyme that acts as a protease. In humans, acrosin is encoded by the ACR gene. Acrosin is released from the acrosome of spermatozoa as a consequence of the acrosome reaction. It aids in the penetration of the Zona Pellucida.

Acrosin is a typical serine proteinase with trypsin-like specificity.

The reaction proceeds according to the usual serine protease mechanism. First, His-57 deprotonates Ser-195, allowing it to serve as a nucleophile. Deprotonated Ser-195 then reacts with the carbonyl carbon of a peptide, forming a tetrahedral intermediate. The tetrahedral intermediate then collapses, resulting in an H2N-R1 leaving group, which is protonated through His-57. Finally, His-57 deprotonates a water molecule, which can then serve as a nucleophile by similarly reacting with the carbonyl carbon. Collapse of the tetrahedral intermediate then results in a Ser-195 leaving group, which is protonated through His-57, resulting in all residues returned to their pre-catalytic state, and a carboxylic acid where there was previously a peptide bond.

Acrosin is the major proteinase present in the acrosome of mature spermatozoa. It is stored in the acrosome in its precursor form, proacrosin. Upon stimulus, the acrosome releases its contents onto the zona pellucida. After this reaction occurs, the zymogen form of the protease is then processed into its active form, β-acrosin. The active enzyme then functions in the lysis of the zona pellucida, thus facilitating penetration of the sperm through the innermost glycoprotein layers of the ovum.

The importance of acrosin in the acrosome reaction has been contested. It has been found through genetic knockout experiments that mouse spermatozoa lacking β-acrosin (the active protease) still have the ability to penetrate the zona pellucida. Thus, some argue for its role in assisting in the dispersal of acrosomal contents following the acrosome reaction, while others demonstrate evidence for its role as a secondary binding protein between the spermatozoa and zona pellucida. Under the secondary binding protein hypothesis, acrosin could serve a role in binding to molecules on the zona pellucida, tethering the spermatozoa to the egg. This "tethering" would ensure penetration due to the applied motile force of the spermatozoa.


...
Wikipedia

...