*** Welcome to piglix ***

Acousto-optic modulator


An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters (see Brillouin scattering) off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in Sum-frequency generation or Difference-frequency generation between phonons and photons.

The properties of the light exiting the AOM can be controlled in five ways:

This frequency shift is also required by the fact that energy and momentum (of the photons and phonons) are conserved in the process. A typical frequency shift varies from 27 MHz, for a less-expensive AOM, to 1 GHz, for a state-of-the-art commercial device. In some AOMs, two acoustic waves travel in opposite directions in the material, creating a standing wave. Diffraction from the standing wave does not shift the frequency of the diffracted light.


...
Wikipedia

...