An acid–base titration is the determination of the concentration of an acid or base by exactly neutralizing the acid or base with an acid or base of known concentration. This allows for quantitative analysis of the concentration of an unknown acid or base solution. It makes use of the neutralization reaction that occurs between acids and bases. pKa and Ka (acid constants) can also be determined from a pH titration graph.
Acid–base titrations can also be used to find percent purity of chemicals.
Alkalimetry and acidimetry are a kind of volumetric analysis in which the fundamental reaction is a neutralization reaction. Alkalimetry is the specialized analytic use of acid-base titration to determine the concentration of a basic (synonymous to alkaline) substance. Acidimetry, sometimes spelled acidometry, is the same concept of specialized analytic acid-base titration, but for an acidic substance.
The key equipment used in a titration are:
Before starting the titration a suitable pH indicator must be chosen. The equivalence point of the reaction, the point at which equivalent amounts of the reactants have reacted, will have a pH dependent on the relative strengths of the acid and base used. The pH of the equivalence point can be estimated using the following rules:
When a weak acid reacts with a weak base, the equivalence point solution will be basic if the base is stronger and acidic if the acid is stronger. If both are of equal strength, then the equivalence pH will be neutral. However, weak acids are not often titrated against weak bases because the colour change shown with the indicator is often quick, and therefore very difficult for the observer to see the change of colour.
The point at which the indicator changes colour is called the end point. A suitable indicator should be chosen, preferably one that will experience a change in colour (an end point) close to the equivalence point of the reaction.
First, the burette should be rinsed with the standard solution, the pipette with the unknown solution, and the conical flask with distilled water.
Secondly, a known volume of the unknown concentration solution should be taken with the pipette and placed into the conical flask, along with a small amount of the indicator chosen.