*** Welcome to piglix ***

Acetyl cyanide

Acetyl cyanide
Acetyl cyanide
Names
Preferred IUPAC name
Acetyl cyanide
Systematic IUPAC name
Ethanoyl cyanide
Other names
2-Oxopropanenitrile
Pyruvonitrile
Propanenitrile
2-oxo-
α-Oxopropionitrile
Oxopropionitrile
Oxypropionitrile
Pyruvic acid nitrile
2-Oxopropionitrile
2-Oxopropiononitrile
Identifiers
631-57-2 YesY
3D model (Jmol) Interactive image
1737633
ChemSpider 62638 YesY
ECHA InfoCard 100.010.146
EC Number 211-159-2
Properties
C3H3NO
Molar mass 69.06 g·mol−1
Appearance Clear, yellow liquid
Density 0.9745 g/cm3
Boiling point 92.3 °C (198.1 °F; 365.4 K)
Vapor pressure 51.9300003051758 mmHg
1.3764
40.86 Å2
Hazards
Safety data sheet External MSDS
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Danger
H225 H301 H315 H331 H335 H401 H412
P210 P261 P273 P301+310 P311
  • Flammable (F)
  • Toxic (T)
  • Dangerous for the environment (N)
R-phrases R11, R23/25, R51/53, R37/38
S-phrases S45, S61, S36/37
Ingestion hazard Toxic if swallowed.
Inhalation hazard Toxic if inhaled. Causes respiratory tract irritation.
Eye hazard Causes eye irritation.
Skin hazard May be harmful if absorbed through skin. Causes skin irritation.
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline) Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point 14.44 °C (57.99 °F; 287.59 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY  (what is YesYN ?)
Infobox references

Acetyl cyanide is a chemical compound that contains both a nitrile and a carbonyl functional group. Therefore, the molecule falls into the cyanide group as well due to the presence of the carbon nitrogen triple bond. This molecule is part of the acyl cyanide family.

This compound is also known as pyruvonitrile or 2-oxopropionitrile.

Acetyl cyanide typically exists as a clear, colorless liquid.

The structure of acetyl cyanide was determined through the joint use of electron diffraction intensities and rotational constants. These values helped to determine that the average thermal bond distances are 1.116±0.011 Å, 1.167±0.010 Å, 1.208±0.009 Å, 1.477±0.008 Å and 1.518±0.009 Å. Additionally, the bond angles in the structure 124.6±0.7°, 114.2±0.9°, 179.2±2.2° and 109.2±0.7°. This places the single C-C bond at a larger bond distance than the bonds within the vinylacetylene, acrylonitrile and propynal molecules.

Acetyl cyanide is a highly flammable compound. Therefore, this compound should be kept away from sources of heat, flames, and sparks.

Acetyl cyanide's toxicological properties have not been thoroughly investigated. However, it is known that the molecule is toxic if inhaled and would cause a respiratory tract irritation. Also the chemical may cause skin irritation if absorbed through the skin. The compound's toxic affects would target the peripheral nervous system, central nervous system, and the blood stream.

While this chemical has not been confirmed to be a carcinogen, exposure to this chemical causes irritation to the respiratory system and skin. Additionally, acetyl cyanide is toxic by both inhalation and ingestion. Furthermore, this compound may be toxic to aquatic organisms, possibly causing long-term adverse effects in the aquatic environment.

Due to the flammable properties of this molecule, hazardous decomposition could occur within the molecule under extreme heat, forming chemicals such as carbon oxides and nitrogen oxide. Therefore heat, flame, and sparks should all be kept away from this molecule in order to prevent this decomposition from occurring.

Additionally, this molecule should not interact with strong acids and strong bases to ensure that hazardous reactions are prevented.

Two main types of reactions can occur with acetyl cyanide as a reactant; aldol condensation and enolate substitution. Aldol condensation can occur when acetyl cyanide reacts with (Z)-but-2-enal to form (2E,4E)-hexa-2,4-dienoyl cyanide:

Aldol condensation of Acetyl cyanide.png


...
Wikipedia

...