*** Welcome to piglix ***

Acetyl-CoA carboxylase

Acetyl-CoA carboxylase
Identifiers
EC number 6.4.1.2
CAS number 9023-93-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Acetyl-CoA carboxylase alpha
Identifiers
Symbol ACACA
Alt. symbols ACAC, ACC1, ACCA
Entrez 31
HUGO 84
OMIM 601557
RefSeq NM_198839
UniProt Q13085
Other data
EC number 6.4.1.2
Locus Chr. 17 q21
Acetyl-CoA carboxylase beta
Identifiers
Symbol ACACB
Alt. symbols ACC2, ACCB
Entrez 32
HUGO 85
OMIM 200350
RefSeq NM_001093
UniProt O00763
Other data
EC number 6.4.1.2
Locus Chr. 12 q24.1

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is a multi-subunit enzyme in most prokaryotes and in the chloroplasts of most plants and algae, whereas it is a large, multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The most important function of ACC is to provide the malonyl-CoA substrate for the biosynthesis of fatty acids. The activity of ACC can be controlled at the transcriptional level as well as by small molecule modulators and covalent modification. The human genome contains the genes for two different ACCs — ACACA and ACACB.

Prokaryotes and plants have multi-subunit ACCs composed of several polypeptides encoded by distinct genes. Biotin carboxylase (BC) activity, biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT) activity are each contained on a different subunit. The stoichiometry of these subunits in the ACC holoenzyme differs amongst organisms.Humans and most eukaryotes have evolved an ACC with CT and BC catalytic domains and biotin carboxyl carrier domains on a single polypeptide. ACC functional regions, starting from the N-terminus to C-terminus are the biotin carboxylase (BC), biotin binding (BB), carboxyltransferase (CT), and ATP-binding (AB). AB lies within BC. Biotin is covalently attached through an amide bond to the long side chain of a lysine reside in BB. As BB is between BC and CT regions, biotin can easily translocate to both of the active sites where it is required.


...
Wikipedia

...