*** Welcome to piglix ***

Acetalisation


An acetal is a functional group with the following connectivity R2C(OR')2, where both R' groups are organic fragments. The central carbon atom has four bonds to it, and is therefore saturated and has tetrahedral geometry. The two R'O groups may be equivalent to each other or not. The two R groups can be equivalent to each other (a "symmetric acetal") or not (a "mixed acetal"), and one or both can even be hydrogen atoms rather than organic fragments. Acetals are formed from and convertible to carbonyl compounds (aldehydes or ketones R2C=O). The term ketal is sometimes used to identify structures associated with ketones rather than aldehydes and, historically, the term acetal was used specifically for the aldehyde cases.

Formation of an acetal occurs when the hydroxyl group of a hemiacetal becomes protonated and is lost as water. The carbocation that is produced is then rapidly attacked by a molecule of alcohol. Loss of the proton from the attached alcohol gives the acetal.

Acetals are stable compared to hemiacetals but their formation is a reversible equilibrium as with esters. As a reaction to create an acetal proceeds, water must be removed from the reaction mixture, for example, with a Dean-Stark apparatus, lest it will hydrolyse the product back to the hemiacetal. The formation of acetals reduces the total number of molecules present and therefore is not favourable with regards to entropy, unless one uses a diol rather than two discrete alcohol molecules. A way to improve this is to use an orthoester as a source of alcohol. Aldehydes and ketones undergo a process called acetal exchange with orthoesters to give acetals. Water produced along with the acetal product is used up in hydrolysing the orthoester and producing more alcohol to be used in the reaction.


...
Wikipedia

...