Accurizing is the process of improving the accuracy of a firearm or airgun.
For firearms, accuracy is defined as the ability to hit exactly what one is aiming at. Further, accuracy and precision, or the ability to hit the same place over and over again in a repeatable fashion, are the goals of accurizing.
Accurizing generally concentrates on four different areas:
The key to an accurate firearm is consistency. Getting everything to happen the same way for every shot is key to producing small groups, and there are a large number of issues to be addressed in achieving an accurate firearm. The keys to firing an accurate shot are a firm but not overtight grip, the ability to get a good sight picture, and a controlled squeeze of the trigger. The ability to manage recoil is also important in heavily recoiling calibers, both to aid in possible additional shots, and to prevent the user from developing a fear of the recoil.
Determining accuracy is not always a straightforward task, as it depends on a large number of variables.
The accuracy of a shot relies on many different factors, which can be broken down into three broad categories: the firearm, the cartridge, and the shooter. Accurizing generally refers to the processes that are applied to the firearm. Techniques relating to producing accurate ammunition are covered in internal and external ballistics, and handloading, and just like accurizing a firearm, the goal is to produce the most consistent possible results. The shooter must also be consistent, and this means that the fundamentals of marksmanship have to be followed rigorously; any failure on the part of the shooter to remain focused and consistent can result in a bad shot. It's common to use a benchrest or a vise when evaluating ammunition or a weapon for accuracy in order to eliminate human error.
Since adjusting the point of impact to match the point of aim is relatively simple with any type of adjustable sights, the primary goal of accurizing is to increase the precision of the firearm, which is generally measured by looking at the dispersion of a number of shots fired at the same point of aim. An ideal group would be one where all shots land in a hole no larger than the diameter of a single bullet; this would indicate zero dispersion. The most common way of measuring groups then is to measure the edge to edge distance of the farthest holes, and subtract the bullet diameter, which gives the center to center or c-t-c measurement of the group. This can be expressed in linear measures (a one inch group at 100 yards) or in angular measures (a MOA group). Groups for rifles are traditionally shot at 100 yards (91 m), where a minute of arc equals 1.047 inches (26.6 mm), and the one MOA group is a traditional benchmark of accuracy. Handguns are generally used at closer ranges, and are tested for accuracy at their intended range of use. Also of importance is the number of shots fired. Statistical likelihood says the fewer shots that are fired, the smaller the dispersion will be. 3 or 5-shot groups are acceptable for zeroing the sights and rough accuracy estimates, but most shooters consider 10-shot groups to be the minimum for accuracy comparisons.